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Phase synchronization and its cluster feature in two-dimensional coupled map lattices
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Due to a diffusive nearest-neighbor coupling, phase-synchronized states can emerge in two-dimensional
chaotic coupled map lattices. By defining a direction phase~like a spin with up or down direction! as the
direction of two sequential iterations of the logistic map, we find several novel kinds of phase synchronization
which correspond to four different regions in a phase diagram. For the phase with partial phase synchroniza-
tion, as the coupling strengthe increases to a critical thresholdec , a percolationlike transition is found in the
cluster feature of the direction phases relating to the pattern formation. In addition, a scaling of the percolation
probability r;(e2ec)

b with b52.1 is obtained. The spatial and time correlation functions of the phase
clusters are also discussed.
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I. INTRODUCTION

It is well known that an antiferromagnet experiences
phase transition to a ferromagnet because of the interac
between the spins when the temperature is lowered to a c
cal one. In the ferromagnetic state, the magnetization is
equal to zero, implying a net ‘‘up’’ order of the spins. Th
appearance of such an order relates to the symmetry brea
in the system. At the same time, there are some scaling
ponents which well characterize such a transition@1#. Re-
cently, phase-transition or phase-transition-like phenom
have received much attention in chaotic dynamic syste
such as in the coupled map lattices~CMLs! @2–13# and some
other systems~see Ref.@6# and the references therein!. Es-
pecially, the coupled map lattices have become a gen
model for testing physical intuitions and concepts in t
study of spatiotemporal chaotic systems. By separating
values of iterations of each site in the systems into differ
regions or its signs into positive or negative, the systems
argued to be similar to the lattice model of Ising spins, w
‘‘up’’ or ‘‘down’’ spin. Then, some clusters with up-spin o
down-spin are obtained, and the collective dynamic beha
of such spins and the dynamic scaling of some of the ph
cal properties, e.g., the magnetization of the systems,
well studied. However, the phase of systems is obviously
the map dependence since different maps may show diffe
phases@2–19#.

Generally, in a dynamic system, a chaotic state means
the system follows a chaotic trajectory and behaves with r
domlike features. For a trajectory of a continuous dynam
system, the phase can be well defined by its tangent direc
in the phase space. Stimulated by a similar idea, one of
authors~W.W.! of the present work and his co-worker foun
a new phase-ordering in a single logistic map and the co
sponding pattern of a spatially phase order state in the C
by defining a direction phase for a discrete dynamical m
@13#. Such a direction phase is defined by the difference
tween two sequential values of iterations of a map. Ther
a transition for the phase order via a symmetry breaking
the chaotic map which results in a state of nonzero net
1063-651X/2002/66~4!/046201~5!/$20.00 66 0462
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rection phase, or a transition from an ordered arrangemen
the direction phases to a disordered one.

In this paper, we report a study on the synchronization
the direction phase for two-dimensional coupled chaotic m
lattices and their cluster feature. From our simulations
obtain a phase diagram which shows four different synch
nization patterns of the direction phase. We find a perco
tionlike transition in the region with the partial synchroniz
tion pattern of the direction phases. This transition show
different scaling behavior from the ordinary geometrical p
colation. The spatial and time correlation functions are a
found. These functions depend closely on the coupl
strength.

This paper is organized as follows. In Sec. II, we descr
our model of two-dimensional coupled map lattices with d
fusive nearest-neighbor coupling. In Sec. III, we obtain
phase diagram, which shows four different phase synchr
zation patterns, by studying the phase synchronization
haviors for different coupling strengthse and different pa-
rametersm. In Sec. IV, we investigate the percolation featu
of the phase clusters for the partial phase synchronizat
Finally, in Sec. V we give a summary.

II. THE MODEL

Let us consider a two-dimensional lattice consisting
L3L sites with nearest-neighbor coupling@13#,

xn11~ i , j !5 f „xn~ i , j !…1e@ f „xn~ i 11,j !…

1 f „xn~ i 21,j !…1 f „xn~ i , j 11!…1 f „xn~ i , j 21!…

24 f „xn~ i , j !…#/4, ~1!

where e is the coupling strength and the functionf (x) is
chosen as

f ~x!5mx~12x!, ~2!

wheremP@1,4#. The lattice consists ofL3L logistic maps,
and all the maps are coupled together. The coupling is ta
as the diffusive interaction, and its value of the coupli
©2002 The American Physical Society01-1



o-

he
s

p
h
at
y
a

c

it-

e

l-

is

e

ame

at

itu-

nd

nd

sed
ase
his
ase

n
ays
is
di-

s for
-
ori-

the
an

up-

es
ni-
r of

c-

the
e-
the
ior
-
s

co
e

GUOCE ZHUANG, JUN WANG, YI SHI, AND WEI WANG PHYSICAL REVIEW E66, 046201 ~2002!
strengthe is in the region of@0,1#. A periodic boundary
condition is used, i.e.,x(0,j )5x(L, j ),x( i ,0)5x( i ,L),x(L
11,j )5x(1,j ),x( i ,L11)5x( i ,1).

Like a single logistic map, the values of iterations in tw
dimensional coupled map latticesxn( i , j ) also display the
direction of two sequential iterations. As with increasing t
coupling strengthe, more and more sites have a similar o
cillatory behavior. For these sites, the values ofxn( i , j ) al-
ways change their direction alternatively, i.e., first u
direction and then down-direction. We call the sites with t
same direction phase at the same time phase synchroniz
sites. In order to quantitatively characterize the phase s
chronization behavior in the two-dimensional coupled m
lattice systems, the direction phase of the site (i , j ) at some
time n is defined as@13#

Sn~ i , j !5H 11 if xn112xn.0,

21 if xn112xn<0.
~3!

Here Sn( i , j )51 means the up-phaseS↑ and Sn( i , j )521
means the down-phaseS↓ . The sites with the sameSn( i , j )
denote phase synchronization and the phase clusters are
posed of those sites with the same direction phase.

III. PHASE DIAGRAM

Starting from random initial conditions, we make the
erations for Eq.~1! in the parameter region witheP@0,1#
and mP@1,4#. We find four different patterns of the phas
synchronization shown in the phase diagram of Fig. 1.

(i) Phase I. Whenm,3.0, after many iterations, the va
ues of xn( i , j ) for each site reach a fixed point, i.e.,xn11
5xn . So the direction phaseSn( i , j ) is always21 according
to the definition in Eq.~2!. The phase series of each site
↓↓↓↓↓••• for n51,2,3, . . . and so on. It is astationary
state.

(ii) Phase II. In the region of 3.0,m,m0 (m053.68), as
the coupling strengthe increases, more and more sites hav
similar oscillation. Whene reaches a critical valuee0, all

FIG. 1. Phase diagram:~I! stationary state,~II ! full phase syn-
chronization, ~III ! partial phase synchronization,~IV ! complex
phase synchronization. The dashed line corresponds to the per
tion threshold of the phase clusters. The dividing line betwe
phase II and phase III is given by the relatione0(m)'0.28m
20.67.
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sites of the lattice have the same direction phase at the s
time. The phase series of each site is↑↓↑↓↑↓••• for n
51,2,3, . . . , i.e., all sites of the lattice have the up-phase
time n and then the down-phase at timen11. In this case,
the phase cluster covers the whole lattice. We call this s
ation full phase synchronization. The critical valuee0 is
found to have a dependence on the parameterm, i.e., e0
5e0(m). Our simulations give the relationship betweene0
andm as

e0~m!'0.28m20.67, ~4!

which gives a line of demarcation between phase II a
phase III.

(iii) Phase III. When the parameterm is in the region of
3.0,m,m0, but the coupling strengthe is below the critical
value e0, some sites of the lattice have the up-phase a
others have the down-phase at a certain timen. The phase
series is↑↓↑↓↑↓••• for some sites and↓↑↓↑↓↑••• for
other sites whenn51,2,3, . . . , i.e., the sites with up-
~down-! phase at timen will translate to down-~up-! phase at
time n11. In this phase, there exist phase clusters compo
of the sites with the same direction phase. We refer to ph
III as partial phase synchronization. The dashed line in t
phase corresponds to a percolation threshold of the ph
clusters, which will be discussed in the next section.

(iv) Phase IV. When m.m0, the phase synchronizatio
become complex. The direction phase does not alw
change alternatively with time like in phase II and III. It
possible for two consecutive iterations to have the same
rection phase, such that, e.g., the direction phase serie
n51,2,3, . . . will be ↑↑↓↑↓↓•••. We call this phase com
plex phase synchronization. In this case, there exist net
entations~up or down direction! for the time average of the
clusters.

IV. PHASE CLUSTER FEATURE

Figure 2 shows the snapshots of the phase clusters in
case ofm53.6 for three different coupling strengths. We c
see that whene50.15 ande50.25@see Figs. 2~a! and 2~b!#,
which belongs to the region of phase III, some sites have
phase~black dots! and others have down-phase~empty area!.
As the couplinge increases, the direction phase chang
from partial phase synchronization to full phase synchro
zation. The cluster size, which is defined as the numbe
sites in the same cluster, increases as the couplinge in-
creases, and whene.e0 @e050.34 in the case ofm53.6
from Eq.~3!# all sites have the same direction phase@see Fig.
2~c! in the case ofe50.5].

It should be noticed that, in phase III, ase increases from
0 to e0, there exists a percolation transition for the conne
tivity of the clusters. From Fig. 2~a!, we can see that when
e50.15, there are many small clusters dispersed on
whole lattice. Whene50.25, the sizes of the clusters b
come large and there is an infinite cluster throughout
whole network. This shows clearly the percolation behav
@20#. Generally, in the region of@0,e0#, there exists a perco
lation thresholdec where an infinite cluster is formed. Thu

la-
n
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FIG. 2. The snapshots of the
phase clusters with~a! e50.15,
~b! e50.25, and~c! e50.5 in the
case of m53.6. The black dots
correspond to sites having up
phase and the empty area corr
sponds to sites having down
phase.
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ec may indicate a phase transition such that fore aboveec
one percolating network exists and fore below ec no perco-
lating network exists. The percolation threshold for a diff
ent parameterm in phase III is shown with a dashed line
Fig. 1.

In the percolation model@21#, the percolation probability
r is chosen as the order parameter. It is defined as the p
ability of a site belonging to an infinite cluster. We perfor
computer simulations to calculate the percolation probab
r for the systems with different parametersm. Figure 3
shows the dependence of the percolation probabilityr on the
coupling strengthe for three different lattice sizes in the cas
of m53.6. For each lattice size, there exists a critical va
ec . The percolation probabilityr vanishes belowec and is
nonzero aboveec , and then reaches the value of unity ve
fast. The percolation thresholdec is found depending on the
lattice size, i.e.,ec5ec(L). In the limit of infinite lattice,L
→`, the percolation thresholdec can be obtained from the
extrapolation~see the inset in the right-bottom of Fig. 3!, and
in the case ofm53.6 we find thatec is about 0.22. Similar to
the ordinary geometrical percolation, we study the scal
betweenr and e2ec in a region nearec . We can define a
critical exponentb by postulatingr;(e2ec)

b for e slightly
aboveec . In the left-top inset of Fig. 3 we give a log-log plo
of the percolation probabilityr againste2ec for three dif-
ferent lattice sizesL. The straight lines through the da

FIG. 3. r vs e for three different lattice sizes whenm53.6. The
inset in the right-bottom gives the percolation thresholdec(L) for
various lattice sizesL, and the value ofec in the limit of L→` can
be obtained from the extrapolation. The inset in the left-top gi
the scalingr;(e2ec)

b with b52.1.
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points indicate a power-law dependence ofr on e2ec .
From the slopes of the lines the exponentb is found asb
52.1 for all three different lattice sizes. Comparing with t
value of b50.14 for the two-dimensional site percolatio
model, we find that the phase cluster percolation in a tw
dimensional coupled map lattice may belong to a differ
universality from the ordinary geometrical percolation. Th
may be due to different physical reasons, such as the st
correlation between the dynamics of the neighboring site

Next, we study the correlation among the phase clust
The correlation lengthj is defined as the average cluster si
except for the infinite cluster. Figure 4 shows the correlat
lengthj versus the coupling strengthe for several different
lattice sizes. We can see that whene,ec , where the infinite
cluster is not formed yet, the correlation lengthj increases as
e increases. Whene.ec , there exists an infinite cluster. A
e increases, the correlation lengthj decreases due to mor
and more clusters merging to the infinite cluster, and whee
reachese0 ~heree050.34 form53.6), all lattice sites belong
to the infinite cluster and the correlation lengthj vanishes. It
is obvious thatj reaches its maximum whene5ec , and in
the limit of L→`, j becomes infinite near the percolatio
thresholdec .

The spatial and time correlations are defined with the f
lowing functions:

C~r !5

(
r 0

Sn~r 0!Sn~r 01r !

(
r 0

uSn~r 0!Sn~r 01r !u
, ~5!

s FIG. 4. The correlation lengthj vs e for various lattice sizesL
near the percolation thresholdec in the case ofm53.6.
1-3
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C~Dt !5

(
n

Sn~ i , j !Sn1Dt~ i , j !

(
n

uSn~ i , j !Sn1Dt~ i , j !u
, ~6!

whereC(r ) is the spatial correlation function for the distr
bution of phase synchronization in space, andC(Dt) is the
time correlation function for the evolution of phase synch
nization in time. Herer andDt are the spatial and time lags
respectively. Figure 5 shows the relationship between
spatial correlation functionC(r ) and the spatial lengthr in
the case ofm53.4 for different coupling strengthse. Here,
the lattice size is chosen as 5003500 sites. We can see tha
whene<ec (ec50.19 for m53.4), the correlation function
C(r ) is almost zero except for the spatial lags being with
five sites. It is a short-distance correlation. Ase increases
from ec , the spatial correlation becomes nonzero and sh
stronger and stronger long-distance correlativity. Whene is
abovee0 (e050.29 form53.4), all lattice sites belong to
single cluster andC(r ) reaches 1 for any spatial lengthr. It
is interesting to investigate the time correlation function
the complex phase synchronization region, e.g., the regio
phase IV, where the direction phase series are irregular
cause of the fact that asm.m0 the logistic map become
chaotic. Figure 6 shows the dependence of the time corr
tion function C(Dt) on the time stepDt in the case ofm
53.8 for a single site. For each coupling strengthe, the
values ofC(Dt) oscillate between 1 and21. Whene50,
the amplitude is small. As the coupling becomes stronger,
amplitude of the time correlation function increases ob
ously. We can see that the correlativity of the direction ph
in two-dimensional coupled map lattices is largely affec
by the coupling strength both in the simple phase synchr
zation region and in the complex one.

@1# S. K. Ma, Modern Theory of Critical Phenomena~Benjamin,
London, 1976!; N. Goldenfeld,Lectures on Phase Transitio
and the Renormalization Group~Addison-Wesley, Reading
MA, 1992!.

FIG. 5. Relationship between the spatial correlation funct
and the length in space in the case ofm53.4,L5500 for different
coupling strengthse50.05,0.10,0.19,0.22,0.24,.e0. The critical
valuee0 is 0.28.
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V. SUMMARY

In summary, we have studied the behaviors of phase s
chronization in a two-dimensional coupled logistic map l
tice. By defining a direction phase as the direction of tw
sequential iterations of the logistic map, we find four diffe
ent novel kinds of phase synchronization, which correspo
to four different regions in a phase diagram. The phase c
ters are composed of the lattice sites with the same direc
phase at a certain time. We study the features of the ph
cluster with simple phase synchronization. In the region
partial phase synchronization, we find that as the coup
strength increases to a critical thresholdec , there is an infi-
nite cluster in the network. As the coupling further increas
to a critical valuee0, the system reaches full phase synch
nization. In this case, each site in the lattice has the sa
direction phase and the phase cluster covers the whole
tice. From the scaling between the percolation probabilityr
ande2ec , we find that the percolationlike transition of th
phase clusters belongs to a different universal class from
ordinary geometrical percolation. We have also studied
spatial and time correlation functions of the phase synch
nization, and we find that the correlativity of the phase sy
chronization is largely affected by the coupling due to t
nearest-neighbor interactions.
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