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Phase synchronization and its cluster feature in two-dimensional coupled map lattices
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Due to a diffusive nearest-neighbor coupling, phase-synchronized states can emerge in two-dimensional
chaotic coupled map lattices. By defining a direction phdike a spin with up or down directionas the
direction of two sequential iterations of the logistic map, we find several novel kinds of phase synchronization
which correspond to four different regions in a phase diagram. For the phase with partial phase synchroniza-
tion, as the coupling strengthincreases to a critical threshotd, a percolationlike transition is found in the
cluster feature of the direction phases relating to the pattern formation. In addition, a scaling of the percolation
probability p~(e— €,)? with B=2.1 is obtained. The spatial and time correlation functions of the phase
clusters are also discussed.
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[. INTRODUCTION rection phase, or a transition from an ordered arrangement of
the direction phases to a disordered one.

It is well known that an antiferromagnet experiences a In this paper, we report a study on the synchronization of
phase transition to a ferromagnet because of the interactidfie direction phase for two-dimensional coupled chaotic map
between the spins when the temperature is lowered to a critlattices and their cluster feature. From our simulations we
cal one. In the ferromagnetic state, the magnetization is ndPtain a phase diagram which shows four different synchro-
equal to zero, implying a net “up” order of the spins. The Nization patterns of the direction phase. We find a percola-
appearance of such an order relates to the symmetry breakifignlike transition in the region with the partial synchroniza-
in the system. At the same time, there are some scaling e4lOn pattern of the direction phases. This transition shows a
ponents which well characterize such a transitigh Re-  different scaling behavior from the ordinary geometrical per-
cently, phase-transition or phase-transition-like phenomengolation. The spatial and time correlation functions are also
have received much attention in chaotic dynamic systemdound. These functions depend closely on the coupling
such as in the coupled map lattid@MLs) [2—13 and some ~ Strength.

other systemgsee Ref[6] and the references thergirEs- This paper is organized as follows. In Sec. I, we describe
pecially, the coupled map lattices have become a gener@ur model of two-dimensional coupled map lattices with dif-
model for testing physical intuitions and concepts in thefusive nearest-neighbor coupling. In Sec. Ill, we obtain a

study of spatiotemporal chaotic systems. By separating thehase diagram, which shows four different phase synchroni-
values of iterations of each site in the systems into differengation patterns, by studying the phase synchronization be-
regions or its signs into positive or negative, the systems arBaviors for different coupling strengths and different pa-
argued to be similar to the lattice model of Ising spins, withrametersu. In Sec. 1V, we investigate the percolation feature
“up” or “down” spin_ Then, some clusters with up-spin or of the phase clusters for the partial phase synchronization.
down-spin are obtained, and the collective dynamic behaviofinally, in Sec. V we give a summary.
of such spins and the dynamic scaling of some of the physi-
cal properties, e.g., the magnetization of the systems, are Il. THE MODEL
well studied. However, the phase of systems is obviously of
the map dependence since different maps may show differerllt
phaseg2-19|.

Generally, in a dynamic _systgm, a chaotic state means th"%EnH(i ) =000+ e[ Fa(i+1,))
the system follows a chaotic trajectory and behaves with ran-

Let us consider a two-dimensional lattice consisting of
X L sites with nearest-neighbor couplifg3],

domlike features. For a trajectory of a continuous dynamic +F(Xp(i = 1))+ F(Xp(i,j + 1))+ F(Xp(i,j—1))
system, the phase can be well defined by its tangent direction .
in the phase space. Stimulated by a similar idea, one of the —4f(xa(i,))1/4, @

authors(W.W.,) of th? pr_esentl work an_d his co-worker found where € is the coupling strength and the functidix) is

a new phase-ordering in a single logistic map and the COIes sen as

sponding pattern of a spatially phase order state in the CML

by defining a direction phase for a discrete dynamical map f(x)=ux(1—x), )

[13]. Such a direction phase is defined by the difference be-

tween two sequential values of iterations of a map. There isvhereu [1,4]. The lattice consists df X L logistic maps,

a transition for the phase order via a symmetry breaking irand all the maps are coupled together. The coupling is taken
the chaotic map which results in a state of nonzero net dias the diffusive interaction, and its value of the coupling
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1.0 sites of the lattice have the same direction phase at the same
time. The phase series of each sitefig?|[7]--- for n
0.81 1 =1,2,3...,i.e., all sites of the lattice have the up-phase at

time n and then the down-phase at time-1. In this case,
the phase cluster covers the whole lattice. We call this situ-
w I v ation full phase synchronization. The critical valeg is

0.6

041 found to have a dependence on the paramgteii.e., €y
0.2 =€o(w). Our simulations give the relationship between
' andu as
0.0 SE— —

28 30 32 34 36 38 40 €o()=~0.28u—0.67, 4

which gives a line of demarcation between phase Il and
FIG. 1. Phase diagrantl) stationary state(ll) full phase syn- phase lll.
chronization, (Ill) partial phase synchronizatior{)V) complex (iif) Phase Ill. When the paramete is in the region of
phase synchronization. The dashed line corresponds to the percold-0< u< g, but the coupling strengtlis below the critical
tion threshold of the phase clusters. The dividing line betweervalue €;, some sites of the lattice have the up-phase and
phase Il and phase Ill is given by the relatieg(#)~0.28.  others have the down-phase at a certain tim&@he phase
—0.67. series isT/T[T|--- for some sites and T|T]T--- for
other sites whenn=1,2,3..., i.e., the sites with up-
strengthe is in the region of[0,1]. A periodic boundary (down) phase at time will translate to down{up-) phase at
condition is used, i.e.x(0,j)=x(L,j),x(i,0)=x(i,L),x(L  timen+1. In this phase, there exist phase clusters composed
+1j)=x(1,j)x(i,L+1)=x(i,1). of the sites with the same direction phase. We refer to phase
Like a single logistic map, the values of iterations in two- ||| as partial phase synchronization. The dashed line in this
dimensional coupled map latticeg(i,j) also display the phase corresponds to a percolation threshold of the phase
direction of two sequential iterations. As with increasing theclusters, which will be discussed in the next section.
coupling strengthe, more and more sites have a similar os-  (iv) Phase IV When u> u,, the phase synchronization
cillatory behavior. For these sites, the valuesxgfi,j) al-  become complex. The direction phase does not always
ways change their direction alternatively, i.e., first up-change alternatively with time like in phase Il and III. It is
direction and then down-direction. We call the sites with thepossible for two consecutive iterations to have the same di-
same direction phase at the same time phase synchronizatiggction phase, such that, e.g., the direction phase series for
sites. In order to quantitatively characterize the phase sym=1,23 ... willbe 11]/1]|---. We call this phase com-
chronization behavior in the two-dimensional coupled mamlex phase synchronization. In this case, there exist net ori-
lattice systems, the direction phase of the sit¢)(at some  entations(up or down directionfor the time average of the
time n is defined ag13] clusters.

+1 0if Xy —X,>0,

Sh(iLj)= 3 IV. PHASE CLUSTER FEATURE

1 if Xyp1—X,=<0.

Figure 2 shows the snapshots of the phase clusters in the
Here S,(i,j)=1 means the up-phas® and S,(i,j)=—1 case ofu= 3.6 for three different coupling strengths. We can
means the down-phas® . The sites with the sam§,(i,j)  See that wher=0.15 ande=0.25[see Figs. &) and 2b)],
denote phase synchronization and the phase clusters are cowhich belongs to the region of phase IlI, some sites have up-

posed of those sites with the same direction phase. phaseblack dotg and others have down-phagmpty area
As the couplinge increases, the direction phase changes

from partial phase synchronization to full phase synchroni-
zation. The cluster size, which is defined as the number of

Starting from random initial conditions, we make the it- sites in the same cluster, increases as the couging-
erations for Eq.(1) in the parameter region witke[0,1] creases, and whea> ¢, [ ,=0.34 in the case of.=3.6
and we[1,4]. We find four different patterns of the phase from Eq.(3)] all sites have the same direction phésee Fig.
synchronization shown in the phase diagram of Fig. 1. 2(c) in the case 0k=0.5].

(i) Phase | When <3.0, after many iterations, the val- It should be noticed that, in phase lll, asncreases from
ues ofx,(i,j) for each site reach a fixed point, i.e, 0 to €p, there exists a percolation transition for the connec-
=X, . So the direction phas®,(i,j) is always— 1 according tivity of the clusters. From Fig. (@), we can see that when
to the definition in Eq(2). The phase series of each site is e=0.15, there are many small clusters dispersed on the
WLll--- forn=1,2,3... and so on. It is astationary whole lattice. Whene=0.25, the sizes of the clusters be-
State. come large and there is an infinite cluster throughout the

(ii) Phase Il In the region of 3.& u<uq (1o=3.68), as whole network. This shows clearly the percolation behavior
the coupling strength increases, more and more sites have d20]. Generally, in the region df0,eq], there exists a perco-
similar oscillation. Whene reaches a critical valuey, all  lation thresholde, where an infinite cluster is formed. Thus

Ill. PHASE DIAGRAM
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€. may indicate a phase transition such that éoabovee, points indicate a power-law dependence pfon e—e..
one percolating network exists and felbelow €. no perco- From the slopes of the lines the exponghis found asp
lating network exists. The percolation threshold for a differ-=2.1 for all three different lattice sizes. Comparing with the
ent parameteg in phase Ill is shown with a dashed line in value of 8=0.14 for the two-dimensional site percolation
Fig. 1. model, we find that the phase cluster percolation in a two-
In the percolation moddR1], the percolation probability dimensional coupled map lattice may belong to a different
p is chosen as the order parameter. It is defined as the prolhiversality from the ordinary geometrical percolation. This
ability of a site belonging to an infinite cluster. We perform May be due to different physical reasons, such as the strong
computer simulations to calculate the percolation probabiliy=°rélation between the dynamics of the neighboring sites.
p for the systems with different parametess Figure 3 Next, we _study the _correl_atlon among the phase clust_ers.
shows the dependence of the percolation probahilioy the The correlaﬂon Ie_n_gtt§ IS defme_d as the average cluster size
coupling strengtte for three different lattice sizes in the case except for the infinite clugter. Figure 4 shows the gorrelatlon
of u=3.6. For each lattice size, there exists a critical value:en.gth g_versus the coupling strengthfor several dl_ffe_re_nt
€.. The percolation probability vanishes belowe, and is altttuf[ers;lzcra]s:[\flv;en?ag setetthhat V\:?e;ntfi%\;vzert;thre infinite
nonzero above., and then reaches the value of unity veryC usteris not formed yet, tne correlation le g creases as
fast. The percolation threshold is found depending on the € INCreases. Whes> e, Fhere exists an infinite cluster. As
lattice size, i.e.e.=¢€.(L). In the limit of infinite lattice,L € increases, the correla_tlon Iengfhdt_ac_reases due to more
., the percolation threshole, can be obtained from the and more clusters merging to the infinite cluster, and when

) : . B : reacheg, (hereey=0.34 foru=3.6), all lattice sites belong
ﬁ]x::]aépgéztéog(;iegtgev\;giierf(;rlrtlg: ngh;bt:)cat:%rnzgf ';Ii?:igrr]?o to the infinite cluster and the correlation lengtianishes. It
. c 22.

the ordinary geometrical percolation, we study the scalin N opvu_)us tha reaches its maximum wher=e;, and n
betweenp and e— e, in a region neak,. We can define a he limit of L—«, ¢ becomes infinite near the percolation

" ! . thresholde. .

critical exponeniB8 by postulatingp~ (e— €.)” for e slightly c: . . . .

abovee; . In the left-top inset of Fig. 3 we give a log-log plot | The fspatt|_al ar.1d time correlations are defined with the fol-
of the percolation probability againste— e for three dif- owing functions.

ferent lattice sized.. The straight lines through the data
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FIG. 3. p vs € for three different lattice sizes when=3.6. The
inset in the right-bottom gives the percolation threshel(L) for Coupling strength €

various lattice sizek, and the value og, in the limit of L—o0 can
be obtained from the extrapolation. The inset in the left-top gives FIG. 4. The correlation length vs e for various lattice sizet
the scalingp~ (e— €;)? with g=2.1. near the percolation thresho&d in the case ofu=3.6.
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FIG. 5. Relationship between the spatial correlation function FIG. 6. Relationship between the time correlation function and
and the length in space in the casewof 3.4L =500 for different  the time step in the case pf=3.8 for different coupling strengths
coupling strengthse=0.05,0.10,0.19,0.22,0.24¢,. The critcal ~ €=0.,0.5,0.8,0.9,1.0.
value g is 0.28.

V. SUMMARY

; Sn(i,1)Sh+at(i]) In summary, we have studied the behaviors of phase syn-
' (6) chronization in a two-dimensional coupled logistic map lat-
Z [S,(1,j)Sh+atiy))] tice. By defining a direction phase as the direction of two
" sequential iterations of the logistic map, we find four differ-

whereC(r) is the spatial correlation function for the distri- €Nt novel kinds of phase synchronization, which correspond
bution of phase synchronization in space, &{dt) is the to four different regions in a phase diagram. The phase clus-
time correlation function for the evolution of phase synchro-ters are composed of the lattice sites with the same direction
nization in time. Here andAt are the spatial and time lags, Phase at a certain time. We study the features of the phase
respectively. Figure 5 shows the relationship between théluster with simple phase synchronization. In the region of
spatial correlation functiol©(r) and the spatial lengthin ~ partial phase synchronization, we find that as the coupling
the case ofu=23.4 for different coupling strengths Here,  strength increases to a critical thresheld there is an infi-

the lattice size is chosen as 50800 sites. We can see that nite cluster in the network. As the coupling further increases
when e<e. (e.=0.19 for u=3.4), the correlation function to a critical valueey, the system reaches full phase synchro-
C(r) is almost zero except for the spatial lags being withinnization. In this case, each site in the lattice has the same
five sites. It is a short-distance correlation. Asncreases direction phase and the phase cluster covers the whole lat-
from €., the spatial correlation becomes nonzero and showsice. From the scaling between the percolation probabyjlity
stronger and stronger long-distance correlativity. WeeB  ande— €., we find that the percolationlike transition of the
abovee, (e,=0.29 for u=3.4), all lattice sites belong to a phase clusters belongs to a different universal class from the
single cluster an@(r) reaches 1 for any spatial lengthlt  ordinary geometrical percolation. We have also studied the
is interesting to investigate the time correlation function ingpatial and time correlation functions of the phase synchro-
the complex phase synchronization region, e.g., the region Qﬁ)zation, and we find that the correlativity of the phase syn-

phase IV, where the direction phase series are irregular bey onization is largely affected by the coupling due to the
cause of the fact that @8> u the logistic map becomes nearest-neighbor interactions.

chaotic. Figure 6 shows the dependence of the time correla-
tion function C(At) on the time stepAt in the case ofu
=3.8 for a single site. For each coupling strengththe
values ofC(At) oscillate between 1 ane 1. Whene=0,

the amplitude is small. As the coupling becomes stronger, the ]
amplitude of the time correlation function increases obvi- We acknowledge the support from the National Natural
ously. We can see that the correlativity of the direction phasé&cience FoundatiotGrant No. 90103031, No. 10074030,
in two-dimensional coupled map lattices is largely affectedand No. 10021001 and the Nonliner Project973) of the

by the coupling strength both in the simple phase synchroniNSM. One of the author$G.C.Z) acknowledges support
zation region and in the complex one. from Jiangsu Natural Science Foundation.
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